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ABSTRACT

In cell elongation, the juvenile cell vacuolates, takes

up water, and expands by irreversible extension of

the growth-limiting primary walls. This process was

elaborated analytically by Lockhart in themid-1960s.

His growth equation does not, however, include the

influence of the environmental temperature at

which cell growth takes place. In this article we

consider a phenomenological model including tem-

perature in the equation of growth. Also, by intro-

ducing the possible influence of growth regulators

treated here as external perturbations, linear and

nonlinear solutions are found. A comparison of

experimental and theoretical results permits quali-

tative and quantitative conclusions concerning

change in the magnitude of the cell wall yielding

coefficient F as a function of both time and temper-

ature (with or without external perturbations),

which has acquired reasonable values throughout.

Key words: Cell wall extensibility; Growth stim-
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INTRODUCTION

Plant cell development consists of two interrelated

processes: growth and differentiation. Growth can be

described as a three-step model: (1) cell cycle (new

cells are formed), (2) cell elongation, and (3) cessa-

tion of cell enlargement (cell maturation). In (step 2)

the juvenile cell vacuolates, takes up water, and ex-

pands by irreversible extension of the growth-limit-

ing primary walls. The growth process is based on

irreversible extension of the whole organism as a

result of the increase in the quantity and size of cells,

the mass of protoplast, and the cell walls (Fogg 1975;

Kutschera 2000 and articles cited therein; see for a

review). Growth of any plant organ can be split into

three basic phases: the initial phase of slow growth,

the intense growth phase and, eventually, the final

phase of slow growth. Such regularity can be repre-

sented by a sigmoid curve that characterizes the

course of individual cell growth, the growth of plant

organs, and the growth of the plant as a whole. Plant

growth is influenced by physical (abiotic) and biotic

factors of the environment (Wright 1966; Trewavas

1991; Edelmann 1995). The external factors that

fundamentally influence plant growth are tempera-

ture, light,water and soil factors, pH, and atmosphere

composition. A rise in temperature gradually

increases the intensity of growth (which is also due

to acceleration of chemical reactions by raising

the temperature). However, after the optimum
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temperature has been exceeded a rapid decrease in

the intensity of plant growth begins (caused by dys-

function of the plasmalemma). The experimental

relations between temperature, turgor pressure, and

the growth of plant cells have been investigated by

Proseus and others (2000).

The problem of plant growth raises several basic

questions: What limits the growth rate? What is the

role of temperature in the growth rate of real

plants? The first question is broadly discussed in a

review article (Cosgrove 1986) where the prevailing

concept of plant cell growth results from turgor-

driven yielding of the cell wall, which is a physical

description of how plant cells increase in size during

growth and morphogenesis. Cosgrove (1986) con-

siders plant cell enlargement as resulting from two

independent processes. First, water absorption will

increase the volume of the cells, given water con-

tent of 85%–95%. Second, wall yielding generates

the driving force of water uptake.

Growth regulators are of fundamental impor-

tance in growth and development (see also Cleland

1986). These substances stimulate or inhibit the

processes of growth. Natural regulators acting on

the growth process—both stimulatory and inhibi-

tory—are the plant hormones auxins, gibberellins,

cytokinins, ethylene, and abscisic acid.

To the most intensely studied abiotic factors be-

long heavy metal compounds (for example, cad-

mium). Cadmium evokes a number of parallel and/

or consecutive events at the molecular, physiologi-

cal, and morphological levels (Sanita di Toppi and

Gabbrielli 1999). Excess Cd causes a number of

toxic symptoms in plants, like growth retardation,

inhibition of photosynthesis, induction and inhibi-

tion of enzymes, altered stomatal action and water

relations, efflux of cations, and generation of free

radicals (Ros and others 1992; Prasad 1995;

Skorzynska-Polit and Baszynski 2000). Cadmium

uptake, translocation and localization in maize

shoots at the tissue and cellular levels were recently

investigated by Wojcik and Tukiendorf (2005), who

also demonstrated that growth of maize seedlings

depended strongly on Cd concentration.

The objective of the present article is to introduce

the notion of temperature to the growth equations

via the state equation. In our opinion the Lockhart

model is a good candidate for the temperature

extension: in its original form it deals with the car-

dinal thermodynamic quantities like the cell volume

and pressure. The only factor lacking is temperature.

The extension, however, is straightforward through

the state equation. Such an approach, as used in our

article, is fully justified (Stanley 1971) and makes

possible the creation of a new phenomenological

(thermodynamic) model of growth. After preparing

the proper equations, we adjust them to the experi-

mental data and quantitatively describe the elonga-

tion of maize versus time, parameterized by

temperature. Twomajor solutions of these equations

are found: (1) a linear solution for unperturbed

growth and (2) linear and nonlinear solutions of

growth influenced by external perturbation (growth

hormones and abiotic factors), which in fact both

reflect different conditions of experiments performed

by the authors. Moreover, we notice that the fore-

going major consequence of our model is a good

working mathematical description of the most

essential features of the mechanical properties of the

cell wall (regardingwall yielding as a function of time

and temperature).

MATERIALS AND METHODS

The experiments were carried out with 4-day-old

maize seedlings (Zea mays L.) grown on Hoagland�s
medium (Hoagland and Arnon 1950) at 27�C. Seeds
of maize were cultivated in darkness. We have

chosen five seedlings of the same (2 cm) length. The

initial length of the segments in all experiments was

2 mm. All segments were cut along the coleoptile

axis from the same part of it, about 3 mm below the

cap. This fragment of maize coleoptile elongates

most intensely and is obviously free from cell divi-

sions. Individual coleoptile segments were trans-

ferred to an aerated solution containing standard

micro- and macroelements.

The segments were grown in darkness, and

manipulations of plants (elongation measurements

and transfer to test solutions) were carried out under

green light (sunlight transmitted through a green

filter) because coleoptile growth does not respond to

this light spectrum. Two kinds of experiment were

performed: (1) an unperturbed experiment(control):

The coleoptile segments were divided into eight

groups growing at different temperatures from 5�C,
increased by 5�C up to 40�C. Each group was repre-

sented by 5 segments. The experiment was carried

out within 2 h, and the measurements were taken

every 30 min. (2) an experiment in which perturba-

tion was present: The coleoptile segments were di-

vided into eight groups growing at temperatures

ranging from 5�C, increased by 5�C up to 40�C. The
experiment was carried out within 2 h, and mea-

surements were taken every 30 min. In the linear

response case, auxin (indole -3- acetic acid, IAA), was

applied at concentrations of 10)4 M; as an inhibitor,

weusedCdCl2 (10
)4M), see Figure 1. In thenonlinear

response case, the auxin was applied as a stimulator

16 Pietruszka and others



after t1 = 0.5h (2.5 ·10)5M) of unperturbed growth,

then after 1 h (5 ·10)5M), and after 1.5 h (10)4M); as

an inhibitor, we used CdCl2 after t1 = 0.5 h (2.5 · 10)5

M)ofunperturbed growth, then successively after 1h

(5 · 10)5 M), and 1.5 h (10)4 M) (see Figure 2). The

values presented in Figures 1 and 2 are average val-

ues from five individual measurements. In all

experimental cases, control measurements were

performed. The elongation was measured by a

microscope. Magnification was 75 times with a ste-

reomicroscope (Zeiss ID 03, Germany) plus a micro-

meter screw (Polish Optical Manufacture, Warsaw,

Poland). The standard deviationwas estimated as not

exceeding 10 lm.

Temperature-modified Growth Equations

In the model of plant cell growth the cell turgor

pressure remains in dynamic balance between wall

extension, which tends to dissipate turgor pressure,

and water uptake, acting to restore it (Cosgrove

1986). In the 1960s Lockhart (1965) proposed a

simple differential equation:

1

V

dV

dt
¼ UðP � YÞ ð1Þ

It states that the relative growth rate (here V

denotes the cell volume) depends linearly on

hydrostatic pressure (P) in excess of a critical turgor

(Y). All these are linked by a wall extensibility

coefficient (F). In this model of growth, turgor

pressure coordinates water uptake with cell wall

extension. (It is well established that the driving

force for water uptake is water potential difference

across the cell membrane).

However, plants do not grow in an imaginary

space disconnected from the real world. (As we

noted at the beginning of this article, one of the

external factors fundamentally influencing plant

growth is temperature). Plants usually grow in

definite conditions where one of the most important

growth factors is heat—more precisely, tempera-

ture. In our approach we divide, as is usual in

thermodynamics, the whole system into the

investigated sample (here: a plant cell) and ‘‘the rest

of the world,’’ a thermostat (the environment) that

remains at a constant temperature T. By introducing

the physical model (Figure 3) we are far beyond the

oversimplified picture in which we interpret the

movement of a piston as only reflecting the com-

pressibility/extensibility properties of the water

solution inside the plant cell. On the contrary, we

incorporate a number of basic chemical and bio-

chemical processes that accelerate or decelerate

growth as a function of temperature (kinetics of

chemical reactions, metabolism, photosynthesis

[biomass production], protein denaturing, and so

on). Because both types of processes act simulta-

neously, although with different intensity at distinct

temperature ranges, crossover from one type of

Figure 1. Experimental results: Perturbed (by the appli-

cation of inhibitor/stimulator of a constant concentration

one at a time t = t1) elongation of maize (Zea mays L.)

coleoptile segments versus time at eight different temper-

atures (the linear response).

Figure 2. Experimental results: Perturbed (by the

application of inhibitor/stimulator with an increasing

concentration starting at a time t = t1) elongation of maize

(Zea mays L.) coleoptile segments versus time at eight

different temperatures (the nonlinear response).
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behavior to the other can be expected. Thus, there

should be a delicate balance among all those factors

and consequently a specific, well-defined critical

temperature at which the growth rate is optimal.

To bring temperature into Eq. (1), we utilize the

state equation in the form, P ¼ Y þ cT
V
where T is the

absolute temperature (in Kelvin scale) and

Y = const. The latter assumption needs a comment.

There are few empirical data (Proseus and others

2000) revealing the turgor threshold Y dependence

on temperature T. Because of the sparseness of

information, we are not able to propose an exact

model function for Y(T). Nevertheless, in zeroth

approximation we may surely assume Y(T) = const.

Based on Proseus and others (2000), we acknowl-

edge that the Y(T) dependence is much smaller than

P(T) and thus may be neglected (the assumption Y =

const. still holds). V is generally interpreted as cell

volume, but in the context of numerical recalcula-

tion of experimental data in light of our model we

refer V to the entire organ, the coleoptile. The

pressure of cell solution is proportional to T, and this

is a natural consequence of the molecular energy

increase with temperature. The reciprocal propor-

tionality of P to V we introduce as in the first

approximation, which gives the linear solution

V = V(t) of Eq. (1). This assumption goes along with

the fact that the experiments are performed just in

the linear range of the sigmoidal growth curve. It is,

however, evident that in more precise calculations

one should solve Eq. (1) for subsequent reciprocal

powers of the volume V by the iteration method.

Such an extension would be even more suitable

nonetheless also more complicated. However, such

high accuracy in cases of biological experiments in

which we deal with relatively high statistical error is

superfluous. In the case of external perturbations

our approach yields solutions that are clear and easy

to interpret and are in good agreement with the

elongation experiments.

Accordingly, we propose the following equation

1

V

dV

dt
¼ Uc

T

V
ð2Þ

Although Eq. (2) is a novel attempt to account for

the effect of temperature on cell growth, its sim-

plifying assumptions require explanation: Because

the effect of T on osmotic pressure is large, we, in

fact, make its role implicit in determining the

hydrostatic pressure P within the cell (P stands for

the net pressure) and c is actually RS, where S is the

quantity of solute within the cell.

Simple calculus yields the general expression for

the volume V we have been looking for:

V ¼ V0 þ cT
Z

Udt; ð3Þ

where V0 = V(t = t0) stands for the initial volume of

the cell. By defining nðtÞ ¼ nt :¼
R
UðT ; tÞdt Eq. (3)

can be rewritten as V = V0 + cTnt, which expresses

the solution of the nonperturbed case. Next, we

construct the elongation function as

Elongðs; tÞ � V � V0 ¼ cTnt ¼ cðsþ 273:15Þnt ð4Þ

and s is the measured temperature in Celsius. Eq.

(3) is the solution of the unperturbed Lockhart

equation and expresses change of the volume in the

course of time. Notice, that it linearly increases with

temperature T = s + 273.15�C. However, from

empirical data (see for example, Figures 4 and 5) we

realize that after reaching a critical temperature s*
the volume [here represented by the elongation

function, Eq. (4)] decreases for high temperatures.

We conclude that the state equation itself is not able

to describe completely the temperature dependence

of elongation and cell wall extensibility. Hence, we

propose the following model that allows for the

calculation of the cell wall extensibility as a function

of time and temperature. We bring in the temper-

ature dependence of the elongation function as a

model assumption (phenomenological Ansatz):

Plant cell

P V T 

T

p1 T  

Environment

water uptake

Figure 3. The ‘‘Gedanken experiment’’ set-up: The

movement of the piston in the cylinder (plant cell) reflects

extensibility properties of the cell wall. The additional

container with pressure p1 and the valve is bound to the

action of an inhibitor or a stimulator that can be opened at

a time t0 < t = t1 to release pressure p1. The whole system

is immersed into a thermostat (environment) at a tem-

perature T.
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Elongðs; tÞ ¼ /0ðtÞsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðtÞ2 þ ðs� s�Þ2

q ; ð5Þ

where s is the temperature in Celsius. We have

adopted a Lorentz-like distribution (which normally

describes resonance phenomena), not only because

it best suits as a fitting function to the authors�
experimental data but also for the important

reasons described below.

The outlined system (plant cell) in the energetical

context behaves like most systems described by

differential equations where both dissipative and

extortive forces are present. In such systems there

always exists a variable that is optimal in certain

conditions (like the resonance frequency x = x* for

the harmonic oscillator). In our case, the factor

enforcing the transition from accelerating to

decelerating growth is temperature s. As in the

analogy of the harmonic oscillator, our case also

Figure 4. The experimental results for the linear case

(Lorentzian fit).
Figure 5. The experimental results for the nonlinear

case (Lorentzian fit).
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includes a critical (‘‘resonance’’) temperature

s = s*. However, considering the resonance tem-

perature, we are very well aware that such magni-

tude is meaningless unless we treat it in the

energetical context, that is, multiplying temperature

by the Boltzmann constant T fi kBT. This is in

accordance with the fact that the optimum tem-

perature of growth (s*) corresponds to the maxi-

mum energy absorption due to activation of

internal biochemical processes. Consequently, in

the authors� opinion the system can be described by

the resonance curve—Lorentz distribution func-

tion—however, modified by the factor s. Multipli-

cation of the Lorentz distribution by s is fully

justified by empirical data, according to which

growth should cease altogether at s = 0�C. This is

also in accordance with the fact that the Celsius

scale is a natural temperature scale for plants.

Even though the intuitive explanation for Eq. (5)

has been presented above, nevertheless it should be

derived from the first principles. A tempting way to

obtain such a dependence is to combine the appli-

cation of stochastic resonance in biological systems

where random perturbations (here: temperature

fluctuations) play a useful role in enhancing energy

absorption in nonlinear systems (here: the whole

complexity of basic processes stimulating plants to

grow)(see for example, Hänggi 2002). This mathe-

matically very difficult task is presently under study.

The parameters /0 and a in Eq. (5) are interpreted

as the peak height and half-width of the Lorentz-

like curve, respectively. Accordingly, by comparing

Eqs (4) and (5) we get

nt ¼
1

cðsþ 273:15Þ
/0sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ðs� s�Þ2
q

+
Uðs; tÞ � Uðs; tiÞ

¼ s
cðsþ 273:15Þ

d

dt

/0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðs� s�Þ2

q
0
B@

1
CA

¼ s
cðsþ 273:15Þ

/0
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ðs� s�Þ2
q � /0aa

0

a2 þ ðs� s�Þ2
� �3=2

0
B@

1
CA; ð6Þ

where primes denote, as usual, time derivatives. The

above equation represents the exact form of the

analytically derived cell wall yielding coefficientF (s,
t) in the unperturbed case (with respect to its initial

value at ti for a juvenile cell). To calculate this

quantity numerically, we need to know/0(t), a(t) and
s* from fits of the experimental data. Knowledge of

the (constant) c value is found by fulfilling the con-

dition that in most cases the difference P-Y is of the

order of 0.1 MPa (see for example, Cosgrove 1985;

Taylor and Cosgrove 1987; Triboulot and others

1997). We note, however, that in numerical calcu-

lations the exact value of c is not of great importance,

because it changes the amplitude (the peak value) of

the calculated cell wall yielding coefficient, but the

order of magnitude remains the same.

External Stimulations

As mentioned in the introductory paragraphs, plant

growth can be stimulated by phytohormones or

inhibited by heavy metal compounds. Stimulators

or inhibitors, however, can also be applied at a

certain period of time after incubation, say, at time

t = t1 (the experiment starts at t0). From the math-

ematical point of view, it means (see also Figure 3)

that we perform the following transformation (we

exploit step changes in the pressure P to mimic the

fact of turning on (the application of) growth phy-

tohormones or abiotic factors at a given time t1):

P ! P þ p1hðt � t1Þ ð7Þ

where h(t ) t1) is the Heaviside theta step function

that we couple to the valve placed

in the container with pressure p1 (triggered at t1).

Switching on the pressure p1 < 0 can be inter-

preted as the start of the action of the plant growth

inhibitor, whereas p1 > 0 can be seen as the plant

growth stimulator. The Heaviside theta function has

such a property that it is zero for times less than t1
(the second term in Eq. (7) vanishes what meaning

is ‘‘no added stimulator/inhibitor’’). For times equal

to or greater than t1, the theta function equals one.

It corresponds to the opening of the container with

additional positive (stimulator) or negative (inhibi-

tor) pressure.

Empirical data reveal that the growth rate

exhibits a jump at the time (here: t1) of application

of the stimulator/inhibitor (see for example,

Cosgrove 1985; Karcz and Burdach 2002). In the
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Lockhart equation, the growth rate denotes the

l.h.s. of Eq. (1) and equals F (P–Y). It means that

either F or (P–Y) should significantly change (in the

same manner) at this point. Data in the literature

(Cosgrove 1985; Kutschera 2000) demonstrate that

the cell wall extensibility F does not undergo such

abrupt changes in time. Thus we are left with the

second factor in Eq. (1), P–Y as the candidate for

modeling the stimulator/inhibitor action on growth.

However, some of mechanical features related to

cell wall loosening during growth are implicitly in-

serted into the coefficient F.

From the biological point of view, auxin acts

mainly on the cell wall by loosening hydrogen

bonds in the hemicelullose. It causes the initial

underpressure in plant cells (lowering of water po-

tential) that gives rise to water absorption. This

additional water influx is reflected in Eq. (7) by the

positive second term (p1 > 0) indirectly reproducing

the effect of the cell wall loosening.

Linear Perturbation

The assumptions p1 = b1/V and b1 = const. will

modify Eq. (2) in the following way:

1

V

dV

dt
¼ UðT ; tÞ cT

V
þ b1

V
hðt � t1Þ

� �
+

V ¼ V0 þ cTnt þ b1

Z
UðT ; tÞhðt � t1Þdt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

ð8Þ

We need to find the value of the integral I relevant to

our situation (satisfying the condition I = 0 for t < t1 as

in the unperturbed case; see Appendix A at http://

www.springerlink.com for details). Hence

V ¼ V0 þ cTnt þ b1#ðnt � nt1Þ; ð9Þ

and thus the defined earlier elongation function

reads

Elongðs; tÞ ¼ V � V0 ¼ cTnt
cTnt þ b1ðnt � nt1Þ

�
t < t1
t � t1

ð10Þ

Comparing Eqs (5) and (10), we obtain for t > t1

nt ¼
1

cðsþ 273:15Þ þ b1
� /0sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ðs� s�Þ2
q

þ b1nt1
cðsþ 273:15Þ þ b1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

const

ð11Þ

Accordingly, the final equation for the cell wall

yielding F (s, t) (with respect to its initial value at ti
for a juvenile cell) in the case of the linear pertur-

bation reads

Uðs; tÞ � Uðs; tiÞ ¼
s

cðsþ 273:15Þ þ b1
�

/0
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ðs� s�Þ2
q � /0aa

0

a2 þ ðs� s�Þ2
� �3=2

0
B@

1
CA ð12Þ

Eq. (12) is presented in its general form. How-

ever, if one wishes to calculate its numerical va-

lue, the explicit dependences for the height /0(t)

and the half-width a(t) on time are required. In

fact, we obtain the set of both coefficients for

fixed times from the fitting procedure to the Lo-

rentz-like distribution, Eq. (5), of the elongation

data.

Nonlinear Perturbation

Now, let us investigate another case, where p1 is a

constant. Then Eq. (2) changes to

1

V

dV

dt
¼ U c

T

V
þ p1hðt � t1Þ

� �
ð13Þ

and hence the solution for plant cell volume in

the case of nonlinear perturbation reads (for

detailed derivation see Appendix A at http://www.

springerlink.com):

V ¼ V0 þ cTnt
V0e

p1ðnt�nt1 Þ þ cTnt1

�
t<t1
t � t1

ð14Þ

Now, similar to the preceding two cases, based on

the fit of the experimental data to the Lorentz-like

distribution, we can draw conclusions about cell

wall yielding F both through time and dependent

on temperature. Hence for t ‡ t1,

Elong ¼ V � V0 ¼ V0 e p1ðnt�nt1 Þ � 1
� 	

þ cTnt1 ð15Þ

On the other hand we recall Eq. (5) and compare

it with the above equation. Thus we get

V0 e p1ðnt�nt1 Þ � 1
� 	

þ cðsþ 273:15Þnt1

¼ /0sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðs� s�Þ2

q ð16Þ

The value of nt1 can be established by the unper-

turbed solution at point t = t1; hence the solution

of Eq. (16) eventually reads
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Uðs; tÞ � Uðs; tiÞ

¼ 1

p1

s

V0 � cðsþ 273:15Þnt1 þ
/0sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2þðs�s�Þ2
p

�

/0
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ðs� s�Þ2
q � /0aa

0

a2 þ ðs� s�Þ2
� �3=2

0
B@

1
CA

ð17Þ

The expression above represents the final form of

the relative cell wall extensibility coefficient F (s, t)
(with respect to its initial value at ti for a juvenile

cell) for the case of nonlinear perturbation.

EXPERIMENTAL AND THEORETICAL RESULTS

Our model predicts two kinds of solutions, namely

linear ones and nonlinear ones. Indeed, our exper-

imental data reflect both cases (Figures 1 and 2). In

Figure 1 we see the linear response [according to

Eq. (10)] of the empirical elongation (with the

control subtracted) to the external perturbation

(with a stimulator/inhibitor applied only once at

time t = t1 = 0 h). Similarly, in Figure 2 we observe

a nonlinear response [in accordance with Eq. (15)]

of elongation (also here the control has been sub-

tracted) to an external perturbation (stimulator/

inhibitor applied first at time t = t1 = 1/2 h, and

successively increased at subsequent half-hours).

In Figures 4 and 5 the experimental results are

plotted against changing temperature at fixed times.

The Lorentz-like curves (Eq. 5) were fitted to each

data series with the help of the nonlinear Leven-

berg–Marquardt algorithm. (The same interpolation

method was also used in all subsequent fits.) It is

important that for the linear case, as presented in

Figure 4, the peak heights /0 increase linearly with

increasing time. In contrast, for the nonlinear case

(Figure 5) the peak heights /0 increase exponen-

tially or logarithmically with increasing times,

depending on whether a stimulator or inhibitor was

applied. This property is clearly visible, especially for

the optimum (peak) temperatures; the distances

between the subsequent maxima vary linearly (as

for both controls in Figures 4 and 5, or in the linear

case Figure 4), and exponentially or logarithmically

(stimulator/inhibitor; see Figure 5).

Because the Lorentz-like distribution function is

characterized by three parameters: optimum tem-

perature s*, curve peak height /0, and curve half-

width a, we determined these values by fitting them

to the experimental data (see Figures 4 and 5) for

each series. Having acquired the set of coefficients,

we made further progress by assuming a special

kind of behavior for /0(t) and a(t) in the course of

time. That is, in all linear cases (both controls, plus

the linear response as in Figure 4) we have fitted

linear functions; in the case of the applied stimula-

tor/inhibitor (with increasing concentrations, see

Figure 5), we have fitted an exponent or a loga-

rithm, respectively. The optimal temperature was

29.3�C. After establishing the dependences of /0

and a on time, we insert them into Eq. (6) to find F
(s, t) in the unperturbed case. Next, if we want to

find F (s, t) in the linearly perturbed case, we insert

/0(t) and a(t) into Eq. (12). Eventually, if we wish to

find F (s, t) in the nonlinearly perturbed case, we

insert them into Eq. (17). The results of numerical

computations are presented in the form of 3D plots

(see Figures 6, 7, 8, 9, and 10). All these figures

Figure 6. Theoretical results: The calculated cell wall

yielding F[lm3J)1Æh)1] as a function of time t and tem-

perature s for the case of unperturbed growth (control).

Figure 7. Theoretical results: The calculated cell wall

yielding F[lm3J)1Æh)1] as a function of time t and tem-

perature s for the case of linearly perturbed growth

(stimulator).
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present the model-calculated coefficient F (s, t) for
the cell wall extensibility, as a function of both time

and temperature. The unperturbed growth (control,

Figure 6) characterizes a weak dumping along the

time axis at the crest of the optimum temperature

and even lower dumping at both edges at low and

high temperatures. Figures 7 and 8 demonstrate the

linear response of F on the (applied once) stimu-

lator and inhibitor, respectively, whereas Figures 9

and 10 clearly show the theoretically calculated

nonlinear (exponential) response to continuously

applied stimulator or inhibitor. The pronounced

exponential increase manifests itself particularly at

the crest and in its close vicinity. An interesting

result of the exponential decrease is shown in Fig-

ure 10, where a peculiar kind of bifurcation ap-

pears. This solution is due to the balance in the last

factor of Eq. (17), where if the second term in

parentheses is big enough, the maximum at the

crest changes into the minimum at the bifurcation

line. This kind of behavior may have an interesting

biological interpretation: namely, the growing plant

cell wall can choose either means of optimum

growth when an increasing concentration of

inhibitor is applied. Also, from a practical point of

view, the nonlinear solution of Eq. (13) may have a

very simple interpretation, as it can report on

growth inhibition with increasing pollution of the

investigated area (for example, the acid rains falling

constantly in a given industrial environment in-

creases, as in our solutions, the concentration of the

poisonous factor in the soil). In all cases the con-

stants b1 (linear response) and p1 (nonlinear re-

sponse) have been calculated to obtain continuous

solutions at t = t1, where the perturbation is swit-

ched on. This is in accordance with the fact that

even after application of an intense stimulus, cell

wall extensibility should not have steps (disconti-

nuities) over time but should rather be smooth.

Figures 11 and 12 present the calculated (see

Appendix B at http://www.springerlink.com) radi-

cal change of behavior after the application of

external perturbations (in a form of stimulator/

inhibitor) at time t = t1.

CONCLUSIONS

Accepting as a starting point the time-dependent

differential Lockhart growth equation, we bring the

notion (magnitude) of environmental temperature

into the equation. Such a temperature-modified

equation of growth not only describes the existing

Figure 9. Theoretical results: The calculated cell wall

yielding F[lm3J)1Æh)1] as a function of time t and tem-

perature s for the case of nonlinearly perturbed growth

(stimulator). The exponential increase of the crest along

the time axis is clearly visible.

Figure 10. Theoretical results: The calculated cell wall

yielding F[lm3J)1Æh)1] as a function of time t and tem-

perature s for the case of non-linearly perturbed growth

(inhibitor). The exponential decay of the crest along the

time axis is clearly visible.

Figure 8. Theoretical results: The calculated cell wall

yielding F[lm3J)1Æh)1] as a function of time t and tem-

perature s for the case of linearly perturbed growth

(inhibitor).
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growth data but also allows for the theoretical

determination of the optimum temperature for the

growth rate. Moreover, by taking into account the

temperature-dependent growth experiments, which

also include growth stimulators/inhibitors, we per-

form further investigations and put forward a ‘‘lin-

ear/nonlinear response’’ theory that incorporates

our empirical data and gives a reasonable theoretical

description of the action of plant phytohormones and

abiotic factors on plant growth rate. One of the most

interesting findings of our model is that based on the

simple analytical predictions we are able to draw

qualitative and, especially, the quantitative conclu-

sions about the cell wall extensibility coefficient F
(s, t) itself. We stress that the experiments performed

by the authors confirmed, with a very high degree of

exactness (in all cases the determination coefficients

(R2) exceeding 0.99), the theoretically anticipated

solutions and thus strongly support our model

equations.

In this article we started with the original

Lockhart equation, in which cell wall yielding was

studied in a time-irreversible (non-elastic) regime.

Our temperature-modified model follows this line

and, accordingly, does not take into account cell

wall elastic properties at low temperatures. Hence,

further improvements to the model should be

made to consider both (elastic and non-elastic)

components of cell wall extensibility. Indeed, this

is the issue that is under investigation. Neverthe-

less, it seems that the broad applicability of our

analytical model to many phenomena relevant to

plant cell growth, confirmed by exactness of the

fits of experimental data to the theoretical solu-

tions, gives a new tool for investigation of plant

cell growth in the aspect of its thermodynamic

features.
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Appendix A

Evaluation of the integral I

We wish to integrate the function F (T, t)Æh(t ) t1)

introduced in Eq. (8). If t < t1 then I ¼
R
U T ; tð Þ � 0dt

generally is equal to a constant c1. We put c1 = 0 as

such solution corresponds to the unperturbed case.

If t ‡ t1, then I ¼
R
U T ; tð Þ � 1dt ¼

R
U T ; tð Þdt

þc2 ¼ nt þ c2: Now, as I is a primordial function (in

common sense), it must satisfy the continuity

condition I(t1
)) = I(t1

+). Hence we get the constant

c2 ¼ nt1 and the following expression for I:

I � # nt � nt1
� �

¼ 0

nt � nt1

for t < t1
for t � t1

�
ð18Þ

Derivation of Eq. (17)

Wishing to solve the problem of switching on the

nonlinear perturbation, we need first to find a

solution for the homogeneous differential equation

for Eq. (13):

dV

dt
¼ Up1Vhðt � t1Þ ð19Þ

Second, we perform a variation of the constant

and finally put the calculated constant into the

original (inhomogeneous) equation. From Eq. (19),

we get

V ¼ V0e
p1#ðnt�nt1 Þ; ð20Þ

where V0 stands, as usual, for the initial volume of a

plant cell. Next, let the constant V0 vary, compute its

time-derivative, and compare such calculated

expression with Eq. (13). We finally get the form of

‘‘the constant’’ V0:

V0ðtÞ � V0ðt0Þ ¼ cT
Z

UðT ; tÞe�p1#ðnt�nt1 Þdt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I1

ð21Þ

Now, let us find the analytical form of the integral

I1. If t < t1 then I1 ¼
R
UðT ; tÞ � ldt ¼ nt. If t ‡ t1 then

I1 ¼
Z

UðT ; tÞ exp �p1 � nt � nt1
� �� �

dt

¼ � 1

p1
e�p1� nt�nt1ð Þ þ c

ð22Þ

The constant c in the above equation may be

determined from the continuity condition for I1

integral: I1 t þ1ð Þ ¼ �1=p1 þ c: Thus c ¼ 1=p1 þ nt1 and

I1 ¼
nt
� 1

p1
e�p1 nt�nt1ð Þ þ 1

p1
þ nt1

(
for t > t1

for t � t1
ð23Þ

Putting the obtained form of I1 into Eq. (21) leads

us to the final expression for the volume V:

V ¼
V0 þ cTnt

V0e
p1ðnt�nt1 Þ þ cTnt1

(
t < t1
t � t1

; ð24Þ

which we have been seeking.

Appendix B

Having obtained expressions for the cell wall

yielding coefficient F (s, t) for all cases considered in

the article, we may now estimate the b1 and p1
coefficients bound with the action of phytohor-

mones or abiotic factors. Nature gives us many

reasons to assume that cell wall yielding should be a

continuous function of time and temperature de-

spite the application of perturbations. (Infinite

changes in magnitudes do not exist in descriptions

of real biological and physical systems). The conti-

nuity condition provides a method for solving for b1
in the linear case (now denoted as LC) and p1 in the

nonlinear case (NC):

Uðs; t1Þ � Uðs; tiÞ½ �UC ¼ Uðs; t1Þ � Uðs; tiÞ½ �LC ð25Þ

The temperature s is fixed, and we denote the

unperturbed case as UC. Many calculations of Eq.

(25) lead us to the equation

B2ðsÞ U0
0ðt1Þ


 �
UC

� A a; ðt1Þ½ �UC
B2ðsÞ U0

0ðt1Þ

 �

LC
� A a; ðt1Þ½ �LC

¼ cðsþ 273:15Þ
cðsþ 273:15Þ þ b1

) b1ðsÞ
ð26Þ

from which we are able to calculate b1 (s) numer-

ically for each fixed temperature s. We have de-

noted

BðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðt1Þ½ �UC þ ðs� s�Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðt1Þ½ �LC þ ðs� s�Þ2

q
and

A ¼ /0ðt1Þ½ �UC � a2ðt1Þ

 �

UC
¼ /0ðt1Þ½ �LC � a2ðt1Þ


 �
LC

The same reasoning leads to the analogous deri-

vations for p1(s) in the nonlinear case, where we

start from the following continuity condition:
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Uðs; t1Þ � Uðs; tiÞ½ �UC ¼ Uðs; t1Þ � Uðs; tiÞ½ �NC ð27Þ

Again, tedious calculations lead us to

cðsþ 273:15Þ
p1 � V0

¼
/0
0ðt1ÞUC


 �
� b2ðsÞ � a � a0ðt1Þ½ �UC

/0
0ðt1ÞNC


 �
� b2ðsÞ � a � a0ðt1Þ½ �NC

) p1ðsÞ

ð28Þ

From Eq. (28) we may numerically calculate the

value of p1 for each fixed temperature. The param-

eter a in the above equation expressed by the

product

/0ðt1Þ½ �UC � aðt1Þ½ �UC ¼ /0ðt1Þ½ �NC � aðt1Þ½ �NC
is constant. In contrary,

b ¼ bðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðt1Þ½ �UC þ ðs� s�Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðt1Þ½ �NC þ ðs� s�Þ2

q

depends on temperature, and this fact leads us to

conclusion that p1 also must depend on s.
After performing these calculations, we have fit-

ted the appropriate functions and inserted them into

the expressions for the cell wall yielding / (s, t) in all

cases. The final step was to plot /(s, t) throughout
the whole time range, including time t1 when the

perturbation was applied. It is very interesting that

all predictions about the behavior of b1 or p1 in the

course of time have been fulfilled. We expected that

absolute values of b1(s) and p1(s) should increase

linearly or exponentially in time (the explanation is

obvious: growth regulators are chemical compounds

that act more intensely as the temperature rises; the

thermal vibrations intensify).

Indeed, having obtained the set of calculated

values b1 in the linear case and p1 in the nonlinear

case we have fitted linear functions for auxin (b1 >

0) or CdCl2 (b1 > 0), applied once, and exponents

for auxin or CdCl2, applied with increasing

concentrations (p1 > 0 or p1 < 0, respectively).
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